Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-38066687

RESUMO

The physical and chemical characteristics of the bedrock, along with the geological and hydrological conditions of karst caves may influence the taxonomic and functional diversity of prokaryotes. Most studies so far have focused on microbial communities of caves including only a few samples and have ignored the chemical heterogeneity of different habitat types such as sampling sites, dripping water, carbonate precipitates, cave walls, cave sediment and surface soils connected to the caves. The aim of the present study was to compare the morphology, the composition and physiology of the microbiota in caves with similar environmental parameters (temperature, host rock, elemental and mineral composition of speleothems) but located in different epigenic karst systems. Csodabogyós Cave and Baradla Cave (Hungary) were selected for the analysis of bacterial and archaeal communities using electron microscopy, amplicon sequencing, X-ray diffraction, and mass spectroscopic techniques. The microbial communities belonged to the phyla Pseudomonadota, Acidobacteriota, Nitrospirota and Nitrososphaerota, and they showed site-specific variation in composition and diversity. The results indicate that morphological and physiological adaptations provide survival for microorganisms according to the environment. In epigenic karst caves, prokaryotes are prone to increase their adsorption surface, cooperate in biofilms, and implement chemolithoautotrophic growth with different electron-donors and acceptors available in the microhabitats.


Assuntos
Cavernas , Microbiota , Cavernas/microbiologia , Hungria , Bactérias/genética , Archaea/genética , Microbiota/genética
2.
Nat Commun ; 13(1): 1527, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318333

RESUMO

Retrograde clay mineral reactions (reverse weathering), including glauconite formation, are first-order controls on element sequestration in marine sediments. Here, we report substantial element sequestration by glauconite formation in shallow marine settings from the Triassic to the Holocene, averaging 3 ± 2 mmol·cm-²·kyr-1 for K, Mg and Al, 16 ± 9 mmol·cm-²·kyr-1 for Si and 6 ± 3 mmol·cm-²·kyr-1 for Fe, which is ~2 orders of magnitude higher than estimates for deep-sea settings. Upscaling of glauconite abundances in shallow-water (0-200 m) environments predicts a present-day global uptake of ~≤ 0.1 Tmol·yr-1 of K, Mg and Al, and ~0.1-0.4 Tmol·yr-1 of Fe and Si, which is ~half of the estimated Mesozoic elemental flux. Clay mineral authigenesis had a large impact on the global marine element cycles throughout Earth's history, in particular during 'greenhouse' periods with sea level highstand, and is key for better understanding past and present geochemical cycling in marine sediments.


Assuntos
Sedimentos Geológicos , Minerais , Argila
3.
Cancer Control ; 29: 10732748211068963, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35043700

RESUMO

The possible role of the naturally occurring deuterium in the regulation of cell division was first described in the 1990s. To investigate the mechanism of influence of deuterium (D) on cell growth, expression of 236 cancer-related and 536 kinase genes were tested in deuterium-depleted (40 and 80 ppm) and deuterium-enriched (300 ppm) media compared to natural D level (150 ppm). Among genes with expression changes exceeding 30% and copy numbers over 30 (124 and 135 genes, respectively) 97.3% of them was upregulated at 300 ppm D-concentration. In mice exposed to chemical carcinogen, one-year survival data showed that deuterium-depleted water (DDW) with 30 ppm D as drinking water prevented tumor development. One quarter of the treated male mice survived 344 days, the females 334 days, while one quarter of the control mice survived only 188 and 156 days, respectively. In our human retrospective study 204 previously treated cancer patients with disease in remission, who consumed DDW, were followed. Cumulative follow-up time was 1024 years, and average follow-up time per patient, 5 years (median: 3.6 years). One hundred and fifty-six patients out of 204 (77.9%) did not relapse during their 803 years cumulative follow-up time. Median survival time (MST) was not calculable due to the extremely low death rate (11 cancer-related deaths, 5.4% of the study population). Importantly, 8 out of 11 deaths occurred several years after stopping DDW consumption, confirming that regular consumption of DDW can prevent recurrence of cancer. These findings point to the likely mechanism in which consumption of DDW keeps D-concentration below natural levels, preventing the D/H ratio from increasing to the threshold required for cell division. This in turn can serve as a key to reduce the relapse rate of cancer patients and/or to reduce cancer incidence in healthy populations.


Assuntos
Deutério/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Recidiva Local de Neoplasia/genética , Neoplasias/genética , Água/administração & dosagem , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Variações do Número de Cópias de DNA/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Recidiva Local de Neoplasia/prevenção & controle , Estudos Retrospectivos , Água/química
4.
Curr Issues Mol Biol ; 45(1): 66-77, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36661491

RESUMO

Research with deuterium-depleted water (DDW) in the last two decades proved that the deuterium/hydrogen ratio has a key role in cell cycle regulation and cellular metabolism. The present study aimed to investigate the possible effect of deuterium-depleted yolk (DDyolk) alone and in combination with DDW on cancer growth in two in vivo mouse models. To produce DDyolk, the drinking water of laying hens was replaced with DDW (25 ppm) for 6 weeks, resulting in a 60 ppm D level in dried egg yolk that was used as a deuterium-depleted food additive. In one model, 4T1, a cell line with a high metastatic capacity to the lung was inoculated in the mice's mammary pad. After three weeks of treatment with DDW and/or DDyolk, the tumor volume in the lungs was smaller in all treated groups vs. controls with natural D levels. Tumor growth and survival in mice transplanted with an MCF-7 breast cancer cell line showed that the anticancer effect of DDW was enhanced by food containing the deuterium-depleted yolk. The study confirmed the importance of the D/H ratio in consumed water and in metabolic water produced by the mitochondria while oxidizing nutrient molecules. This is in line with the concept that the initiation of cell growth requires the cells to generate a higher D/H ratio, but DDW, DDyolk, or the naturally low-D lipids in a ketogenic diet, have a significant effect on tumor growth by preventing the cells from raising the D/H ratio to the threshold.

5.
Data Brief ; 36: 106962, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33869692

RESUMO

Precipitation was collected on daily basis at K-puszta regional background monitoring station located near Kecskemét, in the western part of the Great Hungarian Plain, between 1 April 2013 and 31 December 2017 for stable hydrogen and oxygen analyses. The sample collection period covered 24 hours, from 07:00 to 07:00 h LT (Local Time) the next day. Stable hydrogen and oxygen isotope composition of the daily precipitation samples were measured using a Liquid Water Isotope Analyser (LWIA-24d) manufactured by Los Gatos Research Ltd. The dataset includes 472 stable isotopic data representing the continuation of the beforehand monitoring started in 2012 [1]. The dataset provides a unique opportunity to combine daily meteorological data and stable isotope composition of daily precipitation which can help to improve our understanding of the processes and factors at relatively high resolution that govern δD and δ18O values of the precipitation. In addition, the dataset can be used as an isotope hydrological benchmark in comparison with stable isotope dataset obtained from surface- and groundwater or other sources (e.g. climate proxies, agricultural products). Thus, research related to isotope hydrology, agriculture, paleoclimate can benefit from this dataset. Interpretation of this dataset focusing on the relationship between meteorological factors and stable isotope composition of precipitation is in progress.

6.
PLoS One ; 16(1): e0245621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33493213

RESUMO

Speleothems (dominated by cave-hosted carbonate deposits) are valuable archives of paleoclimate conditions. As such, they are potential targets of clumped isotope analyses that may yield quantified data about past temperature variations. Clumped isotope analyses of stalagmites, however, seldom provide useful temperature values due to various isotope fractionation processes. This study focuses on the determination of the microbially induced vital effect, i.e., the isotope fractionation processes related to bacterial carbonate production. A cave site with biologically mediated amorphous calcium carbonate precitation was selected as a natural laboratory. Calcite deposits were farmed under a UV lamp to prevent bacterial activity, as well as under control conditions. Microbiological analyses and morphological investigations using scanning electron microscopy showed that the UV lamp treatment effectively reduced the number of bacterial cells, and that bacterial carbonate production strongly influenced the carbonate's morphology. Stable oxygen isotope analyses of calcite and drip waters, as well as clumped isotope measurements revealed that, although most of the studied carbonates formed close to oxygen isotope equilibrium, clumped isotope Δ47 values varied widely from equilibrium to strongly fractionated data. Site-specific kinetic fractionations played a dominant role in the distribution of Δ47 values, whereas bacterial carbonate production did not result in a detectable clumped isotope effect.


Assuntos
Bactérias/crescimento & desenvolvimento , Carbonatos/química , Sedimentos Geológicos/química , Isótopos de Carbono/química , Carbonatos/metabolismo , Cavernas , Sedimentos Geológicos/microbiologia
7.
Environ Int ; 146: 106263, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271441

RESUMO

A detailed knowledge of the stable isotope signature of precipitation is the basis of investigations in a variety of scientific fields and applications. To obtain robust and reliable results, the representativity of the currently operating (at least, as of 2018) precipitation stable isotope monitoring stations across Slovenia (n = 8) and Hungary (n = 9) was evaluated on the basis of amount-weighted annual averages with the aim of revealing any redundantly (i.e. over-) represented or un(der)represented areas. In the case of the latter, optimal locations for additional sites were suggested in Slovenia and Hungary. The networks of both countries are design-based systems that need to be fine-tuned for long-term optimized operation. The evaluation of the monitoring network was performed taking into consideration the stations operating in Slovenia and Hungary, as well as closely situated ones operating in neighboring countries. The evaluation was carried out in nine different combinations, using spatial simulated annealing, with regression kriging variance as a quality measure. The results showed that (i) there are over- and un(der)represented areas in the network, an issue requiring remedial action, (ii) the mutual information exchange of the precipitation stable isotope monitoring networks of Slovenia and Hungary increases the precision of precipitation δ18O estimation by ~0.3‰ in a 15-30 km wide zone near the borders, and (iii) by an even greater degree in the neighboring countries' stations. The current research may be termed pioneering in the matter of the detailed geostatistical assessment of spatial representativity of a precipitation stable isotope monitoring network, and as such, can serve as an example for future studies aiming for the spatial optimization of other regional precipitation stable isotope monitoring networks.


Assuntos
Monitoramento Ambiental , Chuva , Hungria , Isótopos de Oxigênio/análise , Eslovênia
8.
Molecules ; 25(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197347

RESUMO

The effects of deuterium depletion on the human organism have been, except for the antitumor action, seldom investigated by now and the available data are scarce. In oncological patients who also suffered from diabetes and were treated with deuterium-depleted water (DDW), an improvement of glucose metabolism was observed, and rat studies also proved the efficacy of DDW to reduce blood sugar level. In the present work, 30 volunteers with pre- or manifest diabetes were enrolled to a clinical study. The patients received 1.5 L of water with reduced deuterium content (104 ppm instead of 145 ppm, equivalent 12 mmol/L in human) daily for 90 days. The effects on fasting glucose and insulin level, on peripheral glucose disposal, and other metabolic parameters were investigated. Fasting insulin and glucose decreased, and insulin reaction on glucose load improved, in 15 subjects, while in the other 15 the changes were opposite. Peripheral glucose disposal was improved in 11 of the subjects. In the majority of the subjects, substantial increase of serum high-density lipoprotein (HDL) cholesterol and significant decrease of serum Na+ concentration were also seen-the latter possibly due to activation of a Na+/H+ antiporter by the decreased intracellular deuterium level. The results support the possible beneficial role of DDW in disorders of glucose metabolism but leave questions open, requiring further studies.


Assuntos
Deutério/sangue , Jejum/sangue , Síndrome Metabólica/sangue , Adulto , Glicemia/metabolismo , Feminino , Humanos , Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Água/administração & dosagem
9.
Sci Adv ; 4(12): eaau6178, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30547088

RESUMO

Despite its thermodynamical metastability at near-surface conditions, aragonite is widespread in marine and terrestrial sediments. It abundantly forms in living organisms, and its abiotic formation is favored in waters of a Mg2+/Ca2+ ratio > 1.5. Here, we provide crystallographic evidence of a nanocrystalline CaCO3 polymorph, which precipitates before aragonite in a cave. The new phase, which we term monoclinic aragonite (mAra), is crystallographically related to ordinary, orthorhombic aragonite. Electron diffraction tomography combined with structure determination demonstrates that mAra has a layered aragonite structure, in which some carbonates can be replaced by hydroxyls and up to 10 atomic % of Mg can be incorporated. The diagnostic electron diffraction features of mAra are diffuse scattering and satellite reflections along aragonite {110}. Similar features have previously been reported-although unrecognized-from biogenic aragonite formed in stromatolites, mollusks, and cyanobacteria as well as from synthetic material. We propose that mAra is a widespread crystalline CaCO3 that plays a hitherto unrecognized key role in metastable aragonite formation.

10.
Sci Rep ; 8(1): 12813, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143744

RESUMO

The relationship between the atmospheric concentration of cosmogenic isotopes, the change of solar activity and hence secondary neutron flux has already been proven. The temporal atmospheric variation of the most studied cosmogenic isotopes shows a significant anti-correlation with solar cycles. However, since artificial tritium input to the atmosphere due to nuclear-weapon tests masked the expected variations of tritium production rate by three orders of magnitude, the natural variation of tritium in meteoric precipitation has not previously been detected. For the first time, we provide clear evidence of the positive correlation between the tritium concentration of meteoric precipitation and neutron flux modulated by solar magnetic activity. We found trends in tritium time series for numerous locations worldwide which are similar to the variation of secondary neutron flux and sun spot numbers. This variability appears to have similar periodicities to that of solar cycle. Frequency analysis, cross correlation analysis, continuous and cross wavelet analysis provide mathematical evidence that the correlation between solar cycle and meteoric tritium does exist. Our results demonstrate that the response of tritium variation in precipitation to the solar cycle can be used to help us understand its role in the water cycle.

11.
Sci Total Environ ; 601-602: 679-690, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28577403

RESUMO

Intensive groundwater uptake is a process at the intersection of the anthroposphere, hydrosphere, and lithosphere. In this study, groundwater uptake on a peninsula where only one aquifer system - the Cambrian-Vendian (CmV) - is available for drinking water uptake is observed for a period of four years for relevant radionuclides and chemical parameters (Cl, Mn, Fe, δ18O). Intensive groundwater uptake from the CmV aquifer system may lead to water inflow either from the sea, through ancient buried valleys or from the under-laying crystalline basement rock which is rich in natural radionuclides. Changes in the geochemical conditions in the aquifer may in turn bring about desorption of Ra from sediment surface. Knowing the hydrogeological background of the wells helps to predict possible changes in water quality which in turn are important for sustainable groundwater management and optimization of water treatment processes. Changes in Cl and Ra concentrations are critical parameters to monitor for sustainable management of the CmV groundwater. Radionuclide activity concentrations in groundwater are often considered rather stable, minimum monitoring frequency of the total indicative dose from drinking water is set at once every ten years. The present study demonstrates that this is not sufficient for ensuring stable drinking water quality in case of aquifer systems as sensitive as the CmV aquifer system. Changes in Cl concentrations can be used as a tool to predict Ra activity concentrations and distribute the production between different wells opening to the same aquifer system.

12.
Sci Rep ; 6: 39602, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004767

RESUMO

Speleothem deposits are among the most valuable continental formations in paleoclimate research, as they can be dated using absolute dating methods, and they also provide valuable climate proxies. However, alteration processes such as post-depositional mineralogical transformations can significantly influence the paleoclimatic application of their geochemical data. An innovative sampling and measurement protocol combined with scanning and transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy is presented, demonstrating that carbonate precipitating from drip water in caves at ~10 °C contains amorphous calcium carbonate (ACC) that later transforms to nanocrystalline calcite. Stable oxygen isotope fractionations among calcite, ACC and water were also determined, proving that ACC is 18O-depleted (by >2.4 ± 0.8‰) relative to calcite. This, in turn, has serious consequences for speleothem-based fluid inclusion research as closed system transformation of ACC to calcite may induce a negative oxygen isotope shift in fluid inclusion water, resulting in deterioration of the original compositions. ACC formation increases the speleothems' sensitivity to alteration as its interaction with external solutions may result in the partial loss of original proxy signals. Mineralogical analysis of freshly precipitating carbonate at the studied speleothem site is suggested in order to determine the potential influence of ACC formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...